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Abstract

In this paper we introduce weighted adjacency matrix W(G) of a semigraph G
and study the related spectral properties similar to the spectral properties of the
adjacency matrix of graphs. We prove Sachs type theorem by interpreting first
few coefficients of the characteristic polynomial of W(G) in terms of the semigraph
parameters. We extend Harary formula for the determinant of the adjacency matrix
of graphs to the weighted adjacency matrix of semigraphs. We find bounds for
eigenvalues and energy for certain classes of semigraphs.
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1. Introduction

Semigraph is a natural generalization of the graph introduced by E. Sampathkumar
[13] wherein an edge may contain more than two vertices having middle vertices
apart from the usual end vertices. Several authors [9 - 14] have extended the
concepts and results from graph theory to semigraph theory. There have been
attempts [12, 14] to obtain elegant and useful matrix representation in terms
of different adjacencies in the semigraph. This has been carried out for the
L—adjacency matrix L(G) of the semigraph in [12] wherein the corresponding
spectral analysis in terms of the intrinsic semigraph properties such as the existence
of middle vertices and edges of arbitrary lengths was studied.

In this paper by introducing the concept of ‘weighted adjacency’, we define the
weighted adjacency matrix W(G) of the semigraph and explore the resulting spectral
theory by studying the corresponding characteristic polynomial, eigenvalues and the
energy. We prove Sachs type theorem giving first few coefficients of this characteristic
polynomial in terms of number of vertices, edges and triangles in the semigraph.
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We find the determinant of the matrix W(G) by extending Harary formula [8] for
the determinant of the adjacency matrix of graphs to the W-adjacency matrix
of semigraphs. We derive bounds for eigenvalues (called W-eigenvalues) of the
characteristic polynomial of W(G) and we obtain these bounds for the complete
semigraphs Ef¢ and 7}} | and the uniform semigraphs C,, ,, and K - As in the
case of graphs, we define the W-energy of the semigraph G to be the sum of the
absolute values of its W-eigenvalues and derive bounds similar to graph energy
bounds obtained in [1, 2, 4].

Definition 1.1: A semigraph G is a pair (V,X), where V is a non-empty set
whose elements are called vertices of G and X is a set of ordered n-tuples called
edges of G of distinct vertices, for various n > 2, satisfying the following conditions:

SG1: Any two edges have at most one vertex in common.
SG2: Two edges (u1,u2,...,uy) and (v, va,...,v,) are equal if and only if

(i) m=n and

(i) either u; = v; or u; = vp—jrq for 1 < i < n.

Thus the edge (ui,us,...,uy,) is the same as (un, Up—1,...,u1).

If B = (v1,v9,...,vy,) is an edge of a semigraph, we say that v; and v,, are the end
vertices of edge E and v; for 2 < ¢ < n—1 are the middle vertices or m-vertices
of the edge F and also the vertices vy, ve, ..., v, are said to belong to the edge E.
Two vertices u and v , u # v, in a semigraph are adjacent if both of them belong
to the same edge.

An edge containing at least one m-vertex is called an S-edge, otherwise it is called
an ordinary edge. A semigraph with p vertices and ¢ edges is called a (p, q)-
semigraph. A partial edge of an edge E = (v, viy,...,v;,) is a (k — j + 1)-
tuple E' = (VijsVijyys -5 vy) where 1 < j < k < n. We say that, the partial
edge E' has cardinality k — j + 1, which we again denoted by |E'|. A subedge
of an edge £ = (vj,,viy,...,v;,) is a k-tuple E = (vin’v"jz"”’vijk) where
1<i<jo< - <jpr<n

The number of vertices belonging to an edge E is called the cardinality of E and
is denoted by |E|. A partial edge of cardinality 2 is called a unit partial edge.
The length of an edge E is the number of unit partial edges of the edge E and is
denoted by I(E). Thus if E = (v1,v2,...,v) then [(E) = k — 1 and |E| = k. The
length of a partial edge is defined similarly. If the vertices u, v are adjacent, then
(u,...,v) is a partial edge whose length is denoted by I(u, v).

Three vertices v;,v; and vy are said to form a triangle in a semigraph G, if they
are pairwise adjacent but do not lie on the same edge. If the vertices v;,v; and vy,
form a triangle in a semigraph then the partial edges (v;,...,v;), (vj,...,v}) and
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(vg, ..., v;) are called the sides of the triangle.

A semigraph is complete if any two vertices are adjacent and is strongly complete
if it is complete and every vertex is an end vertex of an edge. The complete semigraph
on p vertices consisting of a single edge of cardinality p is denoted by E;. The
strongly complete semigraph on p vertices containing one edge of cardinality p — 1
and all other edges of cardinality 2 is denoted by T,)_.

A semigraph G is said to be r-uniform if the cardinality of each edge in G is r.
By introducing m number of middle vertices to each edge of the graph C,,, where
C, is the cycle with n vertices, we get a semigraph which is (m + 2)-uniform which
we denote by Cy, . Similarly by introducing m number of middle vertices to each
edge of the graph K,, where K, is the complete graph with n vertices, we get a
semigraph which is (m + 2)-uniform which we denote by K7, ,,. More generally, given
a graph G, by introducing m number of middle vertices to each edge of the graph
G, we obtain a semigraph which is (m + 2)-uniform which we denote by G¢,.

A semigraph can be represented diagrammatically in the plane as follows: The edges
are represented by the Jordan curve whose end points are end vertices of the edge.
The middle vertices of an edge are denoted by small circles placed on the curve in
between the end vertices, in the order specified by the edge E. The end vertices
of edges which are not middle vertices of any other edges are represented by thick
dots. If an m-vertex v of an edge F is an end vertex of another edge E', we draw
a small tangent to the circle (representing v) at the end of the edge E'. Often this
diagram it self is referred to as the semigraph.

The rest of the paper is organized as follows. In Section 2, W-adjacency matrix
of a semigraph is introduced along with its characteristic polynomial. Sachs type
theorem is proved and also Harary formula is generalized to semigraphs for the
determinant of its weighted adjacency matrix. In Section 3, bounds for the W-
eigenvalues and W-energy are obtained for some classes of semigraphs.

2. Weighted Adjacency Matrix of a Semigraph and its Characteristic
Polynomial

A semigraph may have edges having several vertices including possible middle
vertices apart from two end vertices. The L-adjacency matrix L(G) = (I;;) of a
semigraph G was defined in [12] to reflect this aspect by defining

L= 0 if v; and v; are not adjacent or v; = v;
" l(vi,v5) if v; and v; are adjacent,
where two vertices v; and v; are adjacent if they belong to the same edge. In this

paper, we define ‘weighted adjacency’ in the semigraph by normalizing across all
edges of the semigraph.
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2.1 Wewghted Adjacency matrix of a Semwgraph

Definition 2.1: Given a (p,q)-semigraph G, we define its weighted adjacency
(or W -adjacency) matric W(G) = (w;;), where
0 if v; and v; are not adjacent or v; = v;
wij =9 l(vi,v5) . . .
———= if v; and v; are adjacent lying on an edge of length k.

Note that W(G) is a symmetric p x p matrix with entries from Q, the field of

rationals. Also, if v;,v; are end vertices of an edge E, then w;; = l(;)(ig)j ) — 1. We
now compute the row sum of weighted adjacency matrix of the complete semigraph
E¢.

k

Proposition 2.2: If W = (w;;) is the weighted adjacency matrix of the complete
semigraph E} on k vertices, then

k(k+1)
§:1Wj::—_7;__-
]

Proof: Consider the complete semigraph £} with k vertices.

®
O
@)
O
o
T

VU1 V2 U3 V-1 Vg
Fig. 1. Semigraph Ej,

The weighted adjacency matrix of Ej is given by

0 1 2 3 k17

10 1 2 k-2

We_* |2 1 0o 1 k—3
k-1

k=1 k—2 k-3 k—4 -+ 0 |

Hence

k-1 k=2 k—

S wy = %{thLZtJr
1 1

i,J

3 1
t+---+2t}
1

1

k(k -+ 1)
==
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Theorem 2.3: If W = (w;;) is the weighted adjacency matrix of a semigraph G,

then,
Z wyy = Z |E] |E|+1)

4, EeX

Proof: Each edge E of cardinality k is Ej, and so by Proposition 2.2 contributes

@ to Z w;; of the W- adjacency matrix of the given semigraph. Thus, summing

0.
over all edges E, we obtain,

E| (|E|+1
Sy = 3 BELOELED .

i,J FeX

Corollary 2.4: If W = (w;;) is the weighted adjacency matrix of the strongly
complete semigraph T,i_l, then

wa_#

Proof: Consider the semigraph Tkl_l.

V1 V2 V3 U4 V-1

Fig. 2. Semigraph T,:;_1

The semigraph contains one edge of cardinality k¥ — 1 and the remaining k£ — 1 edges
of cardinality 2. Hence by Theorem 2.3, we have,

Z w—Z'E' (1] +1) k(k;1)+(k_1)2:(k—1)3(k+6). -
EeX

Corollary 2.5: If W = (w;;) is the weighted adjacency matrix of the semigraph
Ch,m, then,

Zw”_ m+2§(m+3).
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Proof: Consider the semigraph Cy, p,.

Fig. 3. Semigraph Cy4 3

The semigraph contains n edges, each of cardinality m + 2. Hence by Theorem 2.3,
we have,

Swy=3 |E| (|§| +1 _ n(m+2;(m+3)- _

i.j EeX

Corollary 2.6: If W = (wj;) is the weighted adjacency matrix of the semigraph
K}, ., then
n(n —1)(m+2)(m +3)
> wij = :

— 6
i
Proof: Consider the semigraph K, ..
O O
O O

Fig. 4. Semigraph KZ,2
The semigraph contains "(n2_1) edges, each of cardinality m 4 2. Hence by Theorem
2.3, we have,

~ Bl (Bl +1)  n(n—1)(m+2)(m+3)
%:wij 2 3 ' -

- 6
FeX

2.2 The W-Characteristic polynomsial

Let W be the weighted adjacency matrix of the given (p, ¢)-semigraph G. We call
the characteristic polynomial of W as the W-characteristic polynomial of G and
it is denoted by ©(G,n). We write

O(G,n) =P + ;P  F hanP 2 4 hanP 3 4o+ hy.
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As the entries of the matrix W are rational numbers, the coefficients hy, ho, ..., hy of
the polynomial O(G,n) are also rational numbers. The eigenvalues 11, m2, ... ,7, of
the matrix W, which are the roots of ©(G,n), are referred to as the W-eigenvalues
of the semigraph G. Note that n1,72,...,7n, are real since the matrix W is real
symmetric.

The Coefficients hi, hy and hs of ©(G,n)

Now we prove a result similar to Sachs theorem (Theorem 1.3, [6]) by expressing
the coefficients hj, ho and hs of O(G,n) in terms of the semigraph parameters:

Theorem 2.7: For a (p, ¢)-semigraph G = (V, X), the coefficients h1, hy and hs of
the characteristic polynomial ©(G, ) satisty the following:

(i) h1 =0,
s _ (IE])? (|1E| +1)
(11) 7h2 = EZ ma
X
2abc (4% *1 (E)+172)
() ~hs =D iy 1) 157 =3 Z ®y

EEXZ 2

where /A denotes the set of all triangles T" in the semigraph and a, b, ¢ are the lengths
of the sides of the triangle T'.

Proof: Since the diagonal elements of the matrix W are zero, trace(W) = 0. Thus
hi = trace(W) = 0, proving (i).

Proof of (ii): The coefficient —hs is the sum of all principal minors of the matrix W
with two rows and two columns, having non-zero determinants. Corresponding to
the edge E with |E| = k, these determinants are of the form:

1 2 0 kE—1
k—1 5 k-1 e—1 kE—1
i 0 = 0 -
k—1 k—1 k—1 0
2 2 A2
having the values — (ﬁ) , — (%) ey — (%) respectively. There are k — 1

determinants of the first type, k—2 of the second type, etc., corresponding to vertices
v; and v; lying on E such that [(v;,v;) = 1,2,...,k — 1 respectively.

Now taking the sum of above values, we see that the contribution of each edge E of
cardinality k towards —hs is given by

() s () e (2 s (12

K2k + 1)
12(k — 1)

13
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Now summing over all edges E of the semigraph G, we have,

3 (1E])? (1Bl +1)

—ha = 12 (|E[—1)

EeX

Proof of (iii): —hg is the sum of all principal minors of the matrix W with three
rows and three columns such that their determinants are non-zero. Such a principal
minor corresponds to a set of three vertices v;, v; and vy, which are pairwise adjacent.
There are two cases to be considered.

If v;,v; and v;, do not lie on a single edge, then they form a triangle 7" with the
partial edges S1 = (v, ...,v;), S = (vj,...,v) and S3 = (vg,...,v;). Suppose they
are the partial edges of length a,b and c of the edges F, E' and E” respectively.

The corresponding principal minor is of the form

/

0 a/l(E) b/I(E)
a/l(E) 0 c/IE",
b/IE) ¢/I(E") 0
. 2abc A . . .
whose value is W Let /A denote the set of all such triangles in the
semigraph G. If B; denotes the sum of all such principal minors corresponding to

. . 2abc
all the triangles T in A\, then By = Z W
TeA
Now we consider the case when the vertices v;, v; and vy, all lie on a single edge £ =
(v1,v2,...,Um41) of length m with I(v;,v;) = a, l(vj,vx) = b and (v, v5) = a+b
such that a + b < m. The corresponding principal minor is of the form

0 a/m b/m
a/m 0 (a+b)/m )
b/m (a+b)/m 0

whose value is . We note that a,b € D = {1,2,...,m — 1} such that

a+b<m. To comrgute the number of such combinations of v;, vj, vy for the edge
E = (v1,v2,...,0m+1), it is enough to count the number of possibilities of a + b
for given a and b satisfying a,b € D such that a + b < m. Evidently given a and
b satisfying the above, the number of combinations of vertices v;,v;, vy such that
l(vi,v5) = a, l(vj,vx) = b and l(v;,v%) = a+bis (m+ 1) — (a +b). The sum of

2ab(a + b)
3

2ab b
all such principal minors for valid @ and b is {(m + 1) — (a + b)}%. Hence
corresponding to the edge E = (v1,v2,...,0m+1), the sum of all such principal
minors is 2ab( )
ab(a +
Y. At —(a+by— .

a,beD;a+b<m
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Putting a + b = i, the above expression becomes,

S mt D) (ot ZX_: ((m+ 1) — 3y 22 —9)

m
a,beD;a+b<m

1 oni? z —1 m—l—l—z
52 )( ).

Now taking the summation corresponding to all edges and denoting the sum by B,
we obtain,

1 P2(i2 — 1)(I(E) +1—1)
By =~
’ E;; (I(B))?
Now —hs = B; + By and so, we obtain,
2abc 1 5 l(i) 202 1) (I(B) +1—1)
// o 3 .
JEEVUE) 3 pg g ()
This completes the proof. O

Remark 2.8: Since every graph is a semigraph with each edge of cardinality 2, for
any graph G = (V, X), we have,

_x (B2 (EI+Y) o~ 22 2+1) _
Bl P 1 v Vv e i Pl

EeX EeX

For a graph G, clearly By = 0. For each triangle 7' in G, we have a =b=c =1, as
every edge is of length 1. Thus

Z 5 Qabc Z 9

TeA TeA

and thus —hg is the twice the number of triangles in the graph G. These values of
ho and hj3 so obtained in terms of the graph parameters are well known elementary
facts in the algebraic graph theory (for example, see Proposition 2.3 in Biggs [5]).

Example 2.9:

We compute the coefficients hy and hg for the semigraph G = (V,X) (see Fig.
5) where V' = {vy,v9,v3,v4,v5,v6,v7,v8} and X = {Ey, Es,...,E;} with By =
{v1,v2,v3}, B = {v1,vs8,v5}, B3 = {v1,v7,v6}, By = {v3,v4}, E5 = {v3,v5}, Eg =
{v4,v5} and E;7 = {vs,v6}.

15
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U1 () V3
O
A4
vy
(U3 vy
V6 Vs
Fig. 5. The Semigraph G
The weighted adjacency matrix of G is given by
[0 1/2 1 0 1 1 /2 1/2]
1/2 0 1/2 0 0 0 0 0
1 1/2 0 1 1 0 0 0
0 0 1 0 1 0 0 0
WE=17 o 1 1 0o 1 o 1/2
1 0 0 0 1 0 1/2 0
1/2 0 0 0 0 1/2 0 0
11/2 0 0 0 1/2 0 0 0 |

The W-characteristic polynomial of the semigraph G (using maple) is:

17 . 15 . 121 , 13 17
8 1.6 _ Y5 -4 ~3_Z2_ -° — —
T T 67 T 8T T3 Y

We now compute the coefficients of 7% and 7° by using Theorem 2.7. First we
compute the coefficient —hg of 7% given by

E|)? (|E|+1
o= S
FeX
Note that |Ei| = |E2| = |E3| = 3 and |Ey| = |E5| = |Es| = |E7| = 2. Summing over
three edges of cardinality 3 and four edges of cardinality 2, we get,

9 x4 4x3 9 17
h2_3<12x2)+4<12x1) =3t
In the semigraph G, there are 3 triangles 71 = (v1,vs,v5), To = (v1,vs5,v6) and
T3 = (v3,v4,v5). For the triangle 77, the sides are a; = 2,b; = 1,¢; = 2 lying on the
edges E1, Es5, E» respectively; for the triangle Tb, the sides are ap = 2,bo = 1,¢c0 = 2
lying on the edges FEo, E7, E3 respectively; for the triangle T3, the sides are az =
1,b5 = 1,c3 = 1 lying on the edges Fy4, Es5, Eg respectively. Thus,

2abc
B, = e
! AZET W(E) I(E) I(ET)
20,1 b1 C1 2a2b202 2(1,3()3(,’3

I(E)) () WEs) T 1(Bo) 1(Bs) 1(By) | I(Ew) 1(Bs) 1(Bg) -T2 F2=0
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We now calculate By. Since there are three edges of length 2, we have,

U(E)

1 P —=1) ((B)+1—1) 1 22(22-1) () _ 3
Boo= 52 2 UE) = g ) =
Hence7h3:31+BQ=6+g:12—5‘

The Determinant of the W -adjacency matriz of Semigraphs

Given a semigraph G, let G, denote its associated adjacency graph: G, has the
same vertex set as that of G and two vertices are adjacent in G, if and only if they
are adjacent in the semigraph G. Note that in the semigraph G, two vertices are
adjacent if they lie on the same edge. We refer to [12] for a study of the spectral
analysis of the adjacency matrix of the adjacency graph G,.

We give below an example of the semigraph G (given in Fig. 5) and its associated
adjacency graph G :

U2
V1 2 U3 U1 V3
S
G
(Y
{\%\D’LM vr > 4
Vg Vs Vg Us

Fig. 6. Semigraph G and its associated adjacency graph G,

Using the weighted adjacency matrix of the semigraph G, we attach ‘weights’ for
the edges of G, making G, into a ‘weighted graph’(see p.50 in [3]). If v; and v; are
adjacent in the semigraph G lying on an edge of length k, then (i, j)-entry w;; in
the weighted adjacency matrix W(G) is given by w;; = I(vs,v;)/k. We assign the
weight w;; to the edge v;v; in G,. The resulting weighted graph is denoted by G,
For the above semigraph G and the associated adjacency graph G,, the weighted
graph G, is given below:

17
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Vg 1 Vs

Fig. 7. Weighted graph G,

Harary [8] gave an elegant formula for the determinant of the adjacency matrix of a
graph G in term of its subgraphs. A spanning linear subgraph H of a graph G
is a subgraph H of G such that V(H) = V(G) and the components of H are single
edges or cycles.

Theorem 2.10: Let A be the adjacency matrix of a graph G. Then
detA = " (—1)<(H)geH),
H

where the summation is over all the spanning linear subgraphs H of G, and e(H)
and c(H) denote, respectively, the number of even components and the number of
cycles in H. (Here, the even components of H are the components that are either
single edges or even cycles of H).

Proof: See Theorem 11.7.2 in [2]. O

We improve upon this theorem to obtain the determinant of the weighted adjacency
matrix of a semigraph G:

Theorem 2.11: Let W be the weighted adjacency matrix of the semigraph G.
Then, we have,

detW = "(=1)“H2etH) p( ),
H

where the summation is taken over all spanning linear subgraphs H of the adjacency
graph G, of the semigraph G, e(H) and ¢(H) denote, respectively, the number of
even components and the number of cycles in H, and p(H) denotes the product
of weights of all the edges of H. (When a single edge is a components of H, we
take its contribution to p(H) to be w(e)?, where w(e) is the weight of the edge e by
considering an edge as a 2-cycle).

Proof: Let the semigraph G be of order n with V' = {vy,v9,...,v,}, and let
W = (w;;) be its weighted adjacency matrix. let G, and G, denote respectively its
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associated adjacency graph and weighted adjacency graph. Note that the weight of
the edge v;v; in G, is Wij.

A typical term in the expansion of detW is

S(T) Win(1)War(2) *** Wnr(n)s

where 7 is a permutation on {1,2,...,n} and sgn(m) = 1 or — 1 according as 7 is
an even or odd permutation. This term is zero if and only if for some i, 1 < i < n,
Win(s) = 0, i.e., if and only if 7(i) = i or 7(i) = j(# i) and v; and v; are not adjacent
in G (or, equivalently v;v; is not an edge in the adjacency graph G,). Thus when
this term is nonzero, the permutation 7 is a product of disjoint cycles of length at
least 2. In which case each cycle (ij) of length 2 in 7 corresponds to the single edge
v;v; of G4, while each cycle (ij---p) of length » > 2 in 7 corresponds to a cycle
of length r of G,. Thus each non vanishing term in the expansion of detW gives
rise to a spanning linear subgraph H of G, and conversely. Further in this case the
product Wix(1)*** Wyr(n) can be rearranged as the product of weights of all edges of
H by considering the contribution of a single edge component e of H towards this
product as w(e)?, where w(e) is the weight of the edge e. Thus the value of this
term is
sgn(m) x product of weights of all edges of H.

Now for any cycle C of Sy, sgn(C) = 1 or— 1 according as C is an odd or even cycle.
Also the sgn(7) is the product of all sgn(C'), where C runs through all the cycles in
the decomposition of 7 as the product of disjoint cycles. Thus sgn(w) = (—1)¢(1),
where e(H) is the number of even components of H (i.e., components which are
either single edges or even cycles of the subgraph H). Thus the values of this term
is

(—1)‘3(H) x products of weights of all edges of H.

Further, any cycle of H of length r > 3 gives two orientations and thus each of the
undirected cycles of H of length > 3 yield two distinct cycles in S,,. This completes
the proof of the theorem. O

Example 2.12:

We find detW, the determinant of the W-adjacency matrix of the semigraph G given
in Fig. 5 using Theorem 2.11. Note that detW is equal to the constant term of the
W-characteristic polynomial of G and hence detW = 1/16 (see Example 2.9). The
weighted adjacency graph of G is G, given in Fig. 7. Now consider a spanning linear
subgraph H; of G along with the weights of the edges:

19
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v

Fig. 8. Spanning linear subgraph H;

We observe that e(Hi), the number of even components of Hy is 2; ¢(Hy), the
number of cycles of length > 3 is 1; and p(H1) = (3 x 3) - (3 x 3 x I x 1 x § x 3).

Thus the contribution of Hy to detW is
1 1 1 1 1 1 1
(1221 (o xZxIxlx=x=) [=x=)==—.
2 2 2 2 2 2 32

Also consider the spanning linear subgraph Hs of G:
U2

[N

V1 v3

D=

(%
7 V4

Ve Vs
Fig. 9. Spanning linear subgraph H

The number of even components of Hs is 4; the number of cycles of length > 3 is
zero; and p(Hz) = (3 x )+ (3 x 3)- (3 x 1) (1 x 1). Hence the contribution of H

to detW is
(_1)420 lxl . lxl . lxl (1)(1):i
2 2 2 2 2 2 64

Also consider the spanning linear subgraph Hz of Gy:
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U9

U1 v

\
V4
U7 1
1 vg 2
2
Ve Us

Fig. 10. Spanning linear subgraph Hj

The contribution of H3 to detW is,

(—1)420<%x%>~(%x%)-(%x%>~(lx1):6i4.

It can be easily seen that Hy, Ho and Hj are the only spanning linear subgraphs of
G,. Thus, we obtain,

1 1 1 1
= — G(H) C(H) = — R _— = —
detW EH( D2 p(H) = =+ o+ 57 = 16
3. W-eigenvalues and W-energy and their bounds

The W-eigenvalues 01,72, . . ., 1, of the matrix W(G), which are the roots of ©(G, ),
are real since the matrix W is real symmetric.

Proposition 3.1: If ny,...,n, are the W-eigenvalues of the semigraph G, then,

p
)Y m=0;
=1

N o IEI)2 (E[+1)

EeX

Proof: Since hy = 0, the sum of the roots of the characteristic equation ©(G,n) =0
is zero, proving (i). Also, we have,

p p 2
>oni= <Zm) —2) min; = —2h,

i=1 i=1 1<J

and this proves (ii). O

3.1. Bounds for W-eigenvalues of some semigraphs
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For any semigraph G, we now give the bounds for the largest W-eigenvalue 7y ax.
We make use of the well known result in linear algebra: Let A be a real symmetric
n X n matrix with eigenvalues A\1(A) > - -+ > A\, (A) arranged in nonincreasing order.

1
Let ||z|| denote the usual Euclidean norm: [lz|| = (327, #7)2. Then the following

i=1%;

extremal representation holds (see p. 7 in [4] and p. 456 in [15]):
Ai(4) = HmHaxl{xTAw} and \,(A) = Ilnhinl{xTAx}.
z||= z||=

Theorem 3.2: If G is a (p, q)-semigraph then ny.x satisfies:

1 E|(E| +1 EP (|E]+1
LSy = ZII(II ) < < ZII UEI+Y) _ o
P4 6 (&l -1)

EGX EeX

Proof: For the real symmetric matrix W, we have, fmax > 2 Wz, for any unit
vector z. By choosing the unit vector z = ﬁ(l, ..., 1), we get, Nmax > (D wij)/p.
By Theorem 2.3, we have,

Z Z |E| (1E]+1) |E|+1)

FEeX

1
Thus Nmax > — > |E|(|E] +1).
3p
EeX
Using Proposition 3.1, we have,

14 1/2
(1) (1£] +1)
Thmax < (;7]3) = —2h Z 12 |E| ) .

This proves the theorem. O

We now find bounds for 7max of the complete semigraphs £} and Tkl_1 by finding
the coefficients he and hg of their W-characteristic polynomial.

Theorem 3.3: For the semigraph G = Ej;, we have,

k2(k+1) and — b KA (k+1)(k* —4)
12(k—1) 57 T 90(k — 1)2

Further, the maximum eigenvalue 7.« satisfies:

_h2

k+1 k2(k + 1)
— < - 7.
3 = e =TG- 1)

Proof: The semigraph E} has just one edge of cardinality k (see Fig. 1) and so by
Theorem 2.7, we have,

_ (BD? (1B +1) _ k(k+1)
—ha= D, 2(E-1  12(0k—1)

EecX
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As there are no triangles in Ef;, By = 0. Thus,

E) o, .
=B = 32Ty

90(k — 1)2

We now use Theorem 3.2 to find the bounds for fyax. For the semigraph Ef, we
have p = k and so,

1 |El(BE|+1)  1[k(k+1)] _ k+1
Ly _E[ }_

P pex 3 3
and
Z |E2(|E|+1) _ k2(k+1).
% 6(|E| —1) 6(k—1)
Now the bounds for 7yax follows from Theorem 3.2. O

Theorem 3.4: For the semigraph G = Tkl_17 we have,

(k—1)%k

k(k — 1)(k> + 27k% — 121k + 123)
12(k — 2) ‘

90(k — 2)2

—hy=(k—1)+ and — hg =

Further, the maximum eigenvalue nyax satisfies:

k2+5k~6< - k3 + 10k2 — 35k + 24
3k max = 6(k —2)

Proof: Consider the strongly complete semigraph Tkl_1 with k vertices containing
one edge of cardinality & — 1 and the remaining k£ — 1 edges of cardinality 2 (see Fig.
2). Using Theorem 2.7 and summing over these k edges, we obtain,

(IED? (1E] +1) (k— 1)k

—he = Z —_— = (k= 1)+ ———.
% 12 (|JE| - 1) 12(k — 2)

To compute hg, we first count the number of triangles in Tkl_l. Clearly there are
k — 2 triangles with side lengths a = b = ¢ = 1; k — 3 triangles with side lengths
a=0b=1,c=2; and so on and finally one triangle with sidesa=b=1,c=k — 2.

/11

Also, I(E') = I(E") =1 and [(E") = k — 2. By Theorem 2.7, we have,
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2abc
Bl = Z ! 4 i
2 B IE ) IE)

(k—220)0@) | (k=3200)@) 200 F=2)
k—2 k—2 k—2
k(k—1)
T
To find By, we need only consider the edge of cardinality £—1 of the semigraph Tklil.

This edge is essentially the semigraph Ej; ;. Now we use Theorem 3.3, wherein By
for the semigraph E} has been obtained. By replacing k¥ by £ — 1 in Theorem 3.3,

we obtain,
B — (k—1)2k {(k—1)2—4}
90(k — 2)2 '
Thus,
B _ k(k—-1) (k=12 k{(k—1)*—4}
“hs=DBit B = 3 90(k — 2)2

k(k — 1)(k® + 27k% — 121k + 123)
90(k — 2)2 '

We now use Theorem 3.2 to find the bounds for nyax. For the semigraph 7, kl_l, we
have p = k and so,

EI(E|+1) 1 2x3 k(k—1)] k> +5k—6
Z _E[(kl) + ]:

P A 3 3 3 3k
and
E2(|E|+1 k(k—1)2 k3 + 10k2 — 35k + 24
\/Z||b|7|+1)_\/2[(k_1)+1ék ;]:\/ +6k 5
2 6B D) k-2 k-2
Now the bounds for 7.y follows from Theorem 3.2. O

We now find bounds for nmax for the semigraphs C,,, and K ,, by finding the
coefficients ho and hjs of their W-characteristic polynomial.

Theorem 3.5: For the semigraph G = Cy, ;,, we have,
(m +2)%(m + 3)

“hr =D
and
gy MM+ 2P m A 3m ) o
“hs =9 mm+ 2)23(%71;)1(22 +4)
if n>4.

90(m + 1)2
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Further, the maximum eigenvalue ny.x satisfies:

(m+2)(m+3) n(m + 2)2(m + 3)
WSWWS\/ Gm+1)

Proof: The semigraph C,, ,, has n edges each of cardinality m + 2 (see Fig. 3, for
G = Cy3) and thus using Theorem 2.7 and summing over these n edges, we obtain,

—hy — Z (IE)? (|E| +1) _ (m 4+ 2)%(m +3)

2 (E-1) " 12(mt1)

To determine hg, we find B; and Bs. We first note that there is exactly one
triangle with side lengths a = b = ¢ = m + 1 when n = 3 and no triangles in
the semigraph when n > 4. Thus, when for n = 3 (i.e., for the semigraph Cs,,), we

have, B; = 2((7;”—111)); = 2 and for n > 4, we have, B; = 0.

For finding Bs, we first note that there are n edges and each edge has cardinality
m+2 and hence each edge is nothing but Ef, . Now by Theorem 3.3, the coefficient
—hg of Ef ., is given by

m(m +2)%(m + 3)(m + 4)
90(m + 1)2

Thus, we have,
m(m +2)%(m + 3)(m + 4)

n
B =
2 90(m + 1)

Hence, when n = 3, we have,

m(m +2)%(m + 3)(m + 4)
30(m +1)2 ’

—hy =2+

and for n > 4, we have

nm(m + 2)%(m + 3)(m + 4)
90(m + 1)2

—hg =

We now use Theorem 3.2 to find the bounds for nmax. For the semigraph C,, ,,, we
have p = nm + n and so,

1 |E|(|E|+1) 1 n(m+2)(m+3)]  (m+2)(m+3)
]_)E;( _n(m—i-l)[ 3 ]_ 3(m+1)

and

E2(|E|+1 n(m+2)2(m + 3
Z"" >_\/( P(m+3)

Pt 6(|E|—1) 6(m+1)

Now the bounds for 7.y follows from Theorem 3.2. O
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Theorem 3.6: For the semigraph G = K7, ,,,, we have,

n(n —1)(m + 2)%(m + 3)

he = 24(m + 1)
and
(n — )m(m +2)%(m + 3)(m + 4) oo
3 1T n=
“hs =9 - 1)(n%()§T+$%n — )m(m +2)2(m + 3)(m + 4)
3 * 180(m + 1)? =3

Further, the maximum eigenvalue 7.« satisfies:

(n—1)(m+2)(m+3) n(n —1)(m +2)2(m + 3)
Stm(n— 1)+ 2} = mex = \/ 2m+ 1) '

Proof: The semigraph K7 , has "(nQ_l) edges each of cardinality m + 2 (see Fig.
4, for G = K 272) and thus using Theorem 2.7 and summing over all these edges, we
obtain,

=y UBD? (B

2 (B
_ n(n —1) [(m +2)2(m +3)
2 12(m + 1)

n(n —1)(m + 2)*(m + 3)
24(m+1)

To determine hg, we find B; and Bs. We first note that there is no triangle when
n = 2 and so By = 0 in this case. When n > 3, G has (g) number of triangles each
of length m + 1 with side lengths a = b = ¢ = m + 1. Thus, in this case we have,

B, — n(n—1)(n —2) [Z(m + 1)3] _n(n—1)(n— 2)'

6 (m+1)3 ] 3

For finding Bs, we first note that there are @ number of edges and each edge

has cardinality m + 2 and hence each edge is nothing but EJ;  ,. Now by Theorem
3.3, the coefficient —hg for Ef , is given by

m(m + 2)%(m + 3)(m + 4)
90(m + 1)2

Thus, we have,

n(n — 1) [m(m + 2)%(m + 3)(m + 4) .

B =
2 2 90(m + 1)2
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Hence, when n = 2, we have,

e (n—)m(m +2)%(m + 3)(m + 4)
5T 90(m + 1)2 ’

and for n > 3, we have

n(n—1)(n—2) n n(n — Dm(m + 2)? (m+3)(m+4)

Y -
s 180(m + 1)2
We now use Theorem 3.2 to find the bounds for fmax. For the semigraph K7 ,,,,
have p =n + m@ and so,
1 Z |E|(|E|+1) 1 [n(nl)(m+2)(m+3)
P gex 3 (n+ m@) 6
_ (n=1)(m+2)(m+3)
B 3{m(n—1)+2}
and
\/Z [ER(E[+1) \/n(n —1)(m+2)2(m + 3)
Pt 6(|E]—1) 12(m+1)
Now the bounds for 7.y follows from Theorem 3.2. O

3.2. W-Energy bounds for Semigraphs

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.
There are several bounds known in literature for the graph energy involving number
of its edges and vertices. The McClelland inequality (Theorem 8.7, [6]) gives bounds
involving the determinant of the adjacency matrix of the graph. The W-energy of
the semigraph G, denoted by Ew (G), is defined to be the sum of the absolute values
of the W-eigenvalues of G. Thus Ew (G) = >_¥_, |n;|. We find bounds for the W-
energy by extending the McClelland inequality for semigraphs.

Theorem 3.7: For any (p, q)-semigraph G, we have,

V—2hs + p(p — Dldet W|? < Ew(G) < v/~2pFa,

where —hs is the coefficient of 77~2 in the W-characteristic polynomial ©(G,7) of
ED? (|E|+1

the semigraph G given by: 2 (E-1)

FeX

Proof: Let ny,m2,...,n, be the W-eigenvalues of the semigraph G. Then,

w(G)? = <Z|m) S T

i=1 i#j
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By applying Arithmetic mean - Geometric mean inequality, we obtain,

1
p(p—1)
=3 Il s <H Imllnjl)

175] i#]

1
(ﬁ |n~|2(”‘”> e
=1

Y

p(p

Il

= |detW]r.

Thus Z [ni| |71 = p(p — 1)|det W|% Hence from the above, we have,
i#]

1/2 .
Ew(G) = (Zm+2|mllm> > \/ 2y + plp — 1) |det W2

i=1 i#j

For determining an upper bound, we make use of the Cauchy-Schwartz’s inequality.
We have,

P P 1/2
=S < vi(Xme)
i=1 i=1
S AV4 72p hg.
This proves the Theorem. l

Now using Theorems 3.3 - 3.7, we prove the following corollary.

Corollary 3.8: The bounds for the W-energy FEyw(G) for the semigraphs
Ef, T,g_l, Cnm and Ky, are given by:

1. The W-energy Ew (E}) of Ef, lies between

2 2 3
VD k(- Dldet WE and \/SES.

2. The W-energy Ew (T}_;) of T}l ; lies between

\/2(k 1) + 228 4 k(k — 1)|det W|F and \/2k(k—1)+’“§§’,j:;§2.

3. The W-energy Eyw (C, ) of Cyrm, lies between

\/%W-i—(pz—p) |detW|z27 and n(m+2),/mT+3
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where p = nm + n, the number of vertices of the semigraph C,, .

4. The W-energy Ew (Kj, ,,) of Kf ,, lies between

2_ 2 2 2_ 2
(n n%(;(ri:i)l)(erB) + (pg B p) |det W|i" and \/2p(n 722)1((%121)) (m+3)

where p = W, the number of vertices of the semigraph K7, ,,,. O

Remark 3.9: For the semigraph G given in Fig. 5, the W-eigenvalues (by
using maple) are (approx.): 3.15022066, 0.89049276, 0.28306960, 0.11014332,
—1.69667928, —1.58806609, —0.82943322, —0.31974773. By Theorem 3.2, 2.5 <
Dmax < 4.12, whereas Nmax = 3.15022066 (approx.). Also by Theorem 3.7,
6.7 < Ew(G) < 11.6, whereas Ew (G) = 8.86781 (approx.).
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